|
This example uses the inverse Jacobian to compute the joint rates for the 2R planar manipulator. It uses the 2 2 Jacobian resolved in the base frame.
clear all
a1 = 30; % cm a2 = 30; % cm
theta1 = 60; % deg theta2 = -90; % deg theta12 = theta1 + theta2; % deg
V2Res0 = [60; 0]; % [cm/s]
detJ2Res0 = a1*a2*sind(theta2); invJ2Res0 = (1/detJ2Res0)*[ a2*cosd(theta12), a2*sind(theta12); -(a1*cosd(theta1) + a2*cosd(theta12)), -(a1*sind(theta1) + a2*sind(theta12))];
ThetaDot = invJ2Res0*V2Res0 % [rad/s]
ThetaDot = -1.7321 2.7321
ThetaDotDeg = (180/pi)*ThetaDot % [deg/s]
ThetaDotDeg = -99.2392 156.5350
This MATLAB example illustrates a computation from the textbook Fundamentals of Robot Mechanics by G. L. Long, Quintus-Hyperion Press, 2015. See http://www.RobotMechanicsControl.info for additional relevant files.